La computadora: ¿disparadora de cambios curriculares y metodológicos?

Nieves N. Baade, Fabiana Prodanoff, Clelia Bordogna
nbaade@volta.ing.unlp.edu.ar





Resumen

El objetivo de esta presentación es mostrar como una experiencia áulica, donde se utiliza la PC como instrumento para la resolución de los llamados problemas de lápiz y papel, fue un elemento disparador para generar una serie de situaciones que van desde el desarrollo de "programas" educativos sencillos hasta proponer cambios curriculares y metodológicos para la enseñanza de la Física en los primeros años de la carrera de Ingeniería.

En las primeras experiencias se utilizó los Software comerciales Mathematica e Interactive Physics como programas de cálculo y simulación respectivamente

Este trabajo forma parte de las estrategias desarrolladas para investigar el impacto que puede causar la incorporación de la informática a la enseñanza de las Ciencias.
 

Introducción

"La llamada revolución informática ha producido un impacto apreciable en distintos ambientes, en particular el quehacer docente se ha visto favorecido por el abaratamiento y accesibilidad de los recursos didácticos casi inimaginable unos pocos años atrás"(Liwin, 1995).

A pesar de ello en el medio universitario básico de nuestro país el uso generalizado no ha sido aún aceptado en forma masiva, dado que aún desde la Psicología Cognitiva y las Ciencias de la Educación no se ha demostrado que la informática por sí misma favorezca los procesos de enseñanza. Se suma a esto la realidad de nuestros planteles docentes, donde los profesores en su gran mayoría no manejan con fluidez estos medios razón por lo cual, quizás por temor, presentan un cierto rechazo para su implementación en el aula.

Sin embargo una gran cantidad de experiencias incorporando la informática en el aula, ha aparecido en los últimos años en la bibliografía del tema (Grayson, 1996), de forma tal que se demuestra que el docente actual reflexiona sobre la necesidad de su protagonismo en el cambio de paradigma educacional que se está gestando en la sociedad, condicionado por los desarrollos tecnológicos y el mercado laboral. Es decir, que a pesar de sus temores, intentan impulsar el cambio que quizás permita romper la barrera que actualmente pareciera existir entre profesores y alumnos. No hay que olvidar que nuestra juventud vive en un mundo de imágenes y que para ellos la informática es ya algo cotidiano y absolutamente normal.

La naturaleza particular y compleja de los acontecimientos involucrados en los procesos de enseñanza aprendizaje hacen de la investigación educativa una ciencia que se podría llamar preparadigmátiva. Sin embargo esta naturaleza de la Ciencia de la Educación hacen que las decisiones de las personas puedan influir en gran medida en el proceso educativo (Novak, 1988).

En este contexto, la realidad de nuestras aulas marca las pautas a seguir en las tomas de decisiones a la hora de diseñar las distintas experiencias y la evaluación de las mismas van conformando un cuerpo de conocimiento para realimentar el proceso de diseño e implementación de nuevas experiencias en el marco de una investigación educativa.

En este trabajo desde un enfoque constructivista (Porlan, 1993), estamos trabajando en una línea tendiente a integrar habilidades desarrolladas en los cursos de Matemática con conceptos Físicos que se presentan en distintas etapas de la instrucción bajo aspectos aparentemente distintos. Las teorías del aprendizaje nos muestran que cuando un concepto es relevante, persistente y transparente, se puede retomar en forma de espiral y profundizar a medida que se avanza en la adquisición de conocimientos, sin perder de vista el aprendizaje significativo que de este tema debe alcanzar el alumno en cada etapa.

"Las nuevas ideas pueden ser aprendidas y retenidas en la medida que conceptos relevantes e inclusivos estén adecuadamente claros y disponibles en la estructura cognitiva del individuo y funcionen, de esta forma, como punto de anclaje a las nuevas ideas y conceptos". (Moreira, 1995)

Es bien conocido que la utilización de la computadora en el aula permite abordar actividades en extensión y profundidad, con temas de complejo tratamiento formal, que facilitan el abordaje de los objetivos planteados. También es reconocido que introduce a los alumnos en el manejo de un elemento de trabajo cada vez más frecuente en su profesión (Hennessy, 1995).

El desafío al que nos enfrentamos los docentes de las materias básicas universitarias es el de no caer en la utilización de esta poderosa herramienta, como algo complementario que facilita los cálculos, sino el de convertirla en un instrumento realmente importante en el proceso de enseñanza aprendizaje, que facilite al alumno la incorporación de conceptos que le permitan ir construyendo su conocimiento. Tampoco se debe olvidar que la computadora es en elemento insuperable a la hora de familiarizar a los alumnos con representaciones tridimensionales, que hoy día pocos poseen.
 
 

INCORPORACIÓN DE LA COMPUTADORA PARA LA RESOLUCIÓN DE PROBLEMAS DE LÁPIZ Y PAPEL


En la cátedra de Física II, curso introductorio de Electricidad y Magnetismo, se programó la resolución de dos situaciones problemáticas que involucraban el movimiento de una partícula cargada en el campo generado por dos y cuatro cargas del mismo signo respectivamente.

Al diseñar esta innovación áulica se tuvo presente los resultados de experiencias anteriores (Baade, 1996), (Bordogna, 1996). En esas investigaciones se buscó encontrar las respuestas a los siguientes interrogantes: si bien, la manipulación de variables y parámetros de los sistemas de estudio realizados con programas de computación permiten a los alumnos observar inmediatamente sus efectos y por ende desarrollar hipótesis explicativas de los fenómenos involucrados ¿Permiten realmente detectar leyes físicas o principios subyacentes? ¿Permiten conceptualizar las magnitudes físicas presentes?

Las respuestas halladas fueron que por ahora el rol del docente juega un papel que es insustituible, y que debe acompañar al alumno en todo el proceso de búsqueda de soluciones a situaciones problemáticas, que van desde la modelización del problema real, hasta la interpretación de resultados. Nuevo desafío para los docentes, elaborar las estrategias que permitan este acompañamiento.

La metodología utilizada consistió en resolver las situaciones problemáticas en forma grupal con ayuda de la PC, guías tutoriales y apoyo docente.

La misma motivó tanto a docentes como a alumnos para elaborar nuevas propuestas que permitieron una mayor profundización y comprensión de los temas desarrollados. Es así que se pudo avanzar en los siguientes tópicos:
 
 

a.- El análisis de movimientos oscilatorios y periódicos de diversos sistemas físicos, habitualmente no encarados en los cursos introductorios dada la complejidad matemática involucrada. En los mismos se restringe al estudio del movimiento armónico simple.

b.- El análisis de las gráficas de energía potencial en función de la posición. La asociación de mínimos y máximos de potencial con equilibrios estables e inestables respectivamente.

c.- Una mayor conceptualización de la energía potencial.

d.- Una rápida visualización de la fuerza en función de la posición.

e.- En el estudio de gráficos tridimensionales.
 
 

Desarrollo de una de las experiencias

Se propone el estudio del pozo de energía potencial asociado a una carga de prueba q, liberada en el campo electrostático creado por una distribución de cuatro cargas positivas de igual magnitud Q fijas en los vértices de un cuadrado de lado a, y su correlación con el posible estado de equilibrio estable. Se analiza también la respuesta de la misma cuando se la aparta del equilibrio. Se discute los casos de carga de prueba positiva y negativa.

Se parte del planteo de la expresión del potencial escalar V para punto a lo largo de una de las mediatrices de los lados del cuadrado de cargas y se utilizó el Mathematica para graficarlo.
 


La energía potencial asociada a la carga de prueba, es U(x) = q V(x)
 
 

Figura 1: Energía potencial de la carga de prueba positiva

Figura 2: Energía potencial de la carga de prueba negativa




Del análisis de las figuras 1 y 2, se concluye acerca de la existencia de un pozo de energía potencial asociado a la carga positiva y localizado en el centro de la distribución de cargas, y de dos pozos de energía potencial asociado a la carga negativa y equidistantes del centro del cuadrado.

El mismo análisis se repite para la dirección de una de las diagonales del cuadrado, en puntos de la cual el potencial escalar tiene la siguiente expresión
 
 


 
 
 
 

Figura 3: Energía potencial de una carga positiva
 

Figura 4: Energía potencial de una carga positiva
 
 
 
 
 
 


 
 

Figura 5: Energía potencial de una carga positiva

Figura 6: Energía potencial de una carga negativa
 
 

Figura 7: Energía potencial de una carga negativa



Luego de discutir las predicciones sobre el movimiento de las cargas de prueba en la distribución de cargas estudiadas, se procede a construir una simulación con el Interactive Physics, las condiciones de construcción de las simulaciones y valores de parámetros utilizados en el desarrollo de este trabajo se encuentra a disposición del lector interesado. La simulación permite la experimentación de cada alumno con toda las variaciones de parámetros deseadas.

Por último, se calcula la fuerza como el gradiente de la energía potencial asociada a la carga de prueba q. Este cálculo sólo se realizó para la carga positiva con el potencial calculado sobre la diagonal.
 
 



 

Figura 8: Fuerza sobre una carga positiva





Conclusiones

Si bien las primeras evaluaciones no permiten asegurar que se ha revertido totalmente la situación en lo referente a lograr un aprendizaje significativo. La metodología aplicada ha logrado un alto grado de compromiso por parte de los alumnos en el proceso de aprendizaje.

Es importante resaltar el carácter integrador de la experiencia, que incluye análisis funcional e interpretación de gráficos bi- y tri-dimensionales, integrando habilidades adquiridas en los cursos del área Matemática a los conceptos físicos; el reconocimiento de la matemática como elemento estructurante de la física ayuda a los estudiantes a comprender el significado de fórmulas y operaciones antes abstractas y fortalece la idea de modelización de sistemas.

La incorporación de la PC al aula, permite generar un ámbito de trabajo donde existe una conjunción de interacciones, no solo con los software diseñados para ese fin, sino también entre el alumno con sus compañeros y con los docentes.

La utilización de software comerciales imposibilitó la libre ejercitación por parte de los alumnos fuera del ámbito institucional por no estar al alcance de sus posibilidades económicas.

Una de las variables que más perturbó en el desarrollo de la experiencia fue el tiempo que les demando a los alumnos la resolución de los problemas, el cual fue mayor que el utilizado en las prácticas habituales. Si bien esto puede parecer contradictorio ya que siempre se asegura que la PC y los soft de cálculo permiten rápidamente graficar, variar parámetros, etc., no hay que olvidar que no sólo, en su gran mayoría los alumnos no tienen un manejo fluido de estas herramientas sino también que en el desarrollo de las experiencias deben trabajar en forma interactiva con los soft, sus compañeros y docentes y continuamente deben tomar decisiones para poder seguir avanzando.
 
 

Otra dificultad encontrada fue que los alumnos debieron adaptarse a distintas metodologías en el desarrollo de la misma cursada y que la evaluación para la acreditación no tuvo en cuenta tal situación.

Para salvar estas dificultades sé esta trabajando en dos líneas: a) en un cambio curricular y metodológico más unificador que proporcionen los espacios para este aprendizaje significativo en la Cátedra en cuestión; b) llevar al curso de mecánica el estudio más profundo de está temática manteniendo la metodología aplicada en las experiencias mencionadas.
 
 

NUEVA PROPUESTA DE INNOVACIÓN ÁULICA
 
 

Objetivos

Este trabajo propone cambios: a) curriculares y b) metodológicos.

a) objetivos curriculares: Jerarquización del concepto energía potencial.

La incorporación de está metodología en el primer curso de Física se cree que ayudará a suplir las falencias encontradas en la enseñanza actual y en nuestro medios en este tema.

La organización de la mayoría de los cursos introductorios de Mecánica y de los libros de texto utilizados en ellos, presentan un orden común: se define la variación de energía potencial, se calculan las energías potenciales asociadas a la partícula debido al trabajo de la fuerza peso (energía potencial gravitatoria) y a la fuerza elástica (energía potencial elástica); en el tratamiento de estos conceptos, generalmente se asigna el cero de energía potencial al punto que coincide con el piso y la posición de equilibrio respectivamente. Resultando así, que la energía potencial de la partícula para una altura h respecto al piso es mgh y para un apartamiento x de la posición de equilibrio es 1/2 kx2

Si bien cuando se realizan los primeros cálculos se hace hincapié en que son diferencias de energías, posteriormente los alumnos trabajan rutinariamente con esas fórmulas no incorporando que el verdadero significado está en las diferencias de energía potencial y no en su valor en el punto.

En cuanto a que el trabajo de la fuerza conservativa es independiente del camino por el que se realiza el proceso de cambio importando únicamente el estado inicial y final, solamente se trabaja en ejercitaciones aisladas y no aparece como algo permanente en la resolución de las prácticas.

Los gráficos de la energía potencial en función de la posición quedan relegados para cuando se estudia movimiento armónico simple, trazándose solo la curva asociada a la energía potencial elástica omitiéndose la correspondiente a la gravitatoria.

Si centramos nuestra atención en el alumno, encontramos la existencia de dos preconcepciones que pueden dificultar el aprendizaje: una discutida en numerosos trabajos cual es que la energía es pensada como una fuerza y viceversa; la otra no tan estudiada y que surge al preguntarle a los alumnos, cuando están trabajando con el gráfico de energía potencial, cual es la trayectoria de la partícula unida al resorte, su respuesta es acompañar con el dedo la curva parabólica que nos muestra la variación de la energía potencial con la posición.
 
 

b) objetivos metodológicos:

A través de una situación problemática dada se intenta que los alumnos predigan y fundamenten su predicción sobre el comportamiento del sistema bajo estudio. Además, a través de simulaciones y/o experiencias de laboratorio se corrobora lo anterior.

Para la resolución de las situaciones problemáticas planteadas se utiliza el software comercial Mathematica, el cual nos ha resultado una buena herramienta para resolver ecuaciones, trazar y analizar gráficos sin necesidad de que el alumno tenga un manejo completo del programa. Para las simulaciones se utiliza el Interactive Physics.

Para que los alumnos puedan continuar con su instrucción fuera de la institución se está desarrollando programas educativos sencillos generados por los docentes y de acceso totalmente libre para los alumnos. Se considera que el desarrollo de este tipo de programas es importante por que permiten respetar la idiosincrasia de alumnos y docentes.

El alumno debe trabajar utilizando tutoriales donde se presentan preguntas directrices que lo guían en la búsqueda de los fundamentos teóricos en los cuales se basan los resultados que aparecen en pantalla.

Este paquete instruccional permite familiarizar al alumno con el análisis de gráficas y reconocer en ellos la solución unificadora de diversas situaciones problemáticas que de otra manera se verían en forma aislada y estanca en distintos capítulos de la física. De esta forma la incorporación de la informática contribuye a la unificación e integración de los distintos tópicos de la física permitiendo rápidamente detectar similitudes y diferencias que facilitan la comprensión conceptual de los temas.
 
 

Fundamento metodológico

Con un mapa conceptual mostramos las relaciones que existen entre los diferentes conceptos que se trabajaran en la experiencia propuesta.
 
 

Se ha programado el desarrollo de esta propuesta en cinco etapas, comenzando con la simple asociación de equilibrios estable e inestable con máximos y mínimos de energía potencial, para enfocar luego nuestra atención en el concepto de energía potencial que ha sido utilizado operativamente en esta primera etapa.

Consideramos que el sistema en estudio ubicado en un punto del espacio se encontrara en un estado de equilibrio estable o inestable si ante un apartamiento en cualquier dirección del espacio responde siempre de la misma forma. De lo contrario buscaremos direcciones preferenciales en que se cumplan las condiciones buscadas en el párrafo anterior.

Sé continua con una etapa integradora donde se visualice el mismo concepto en los distintos campos de la física, mecánica y electrostática. Para finalizar y también en forma integradora, se analizaran los movimientos de la partícula, cuando se los aparta de la posición de equilibrio estable.
 
 

Propuesta áulica

A modo de ejemplo desarrollaremos la siguiente situación problemática: Analizar los posible puntos de equilibrio estable e inestables de un carrito en una montaña rusa con valles y crestas modelizadas por arcos de circunferencia.

Este desarrollo procedimental se puede extender a distintas situaciones problemáticas: estudio del movimiento de un cuerpo unido a un resorte, barras apoyadas en el piso o colgando del techo, análisis de partículas cargadas, etc.
 
 

Tutorial
 
 

1era Etapa:

a.- En qué lugar de la pista depositaria el carro para que esté en condición de equilibrio.

b.- En cuál de los puntos seleccionados anteriormente preferiría usted que se encontrará el carrito en que usted viaja en caso de que un desperfecto lo detenga y tratando de repararlo el carrito sufra un pequeño desplazamiento sobra la pista. No hay posibilidad de descarrilamiento.

c.- Los carros están en reposo en los puntos encontrados en (a). En el instante que alcanza su máximo apartamiento en la situación del inciso (b). ¿Qué sucede con la energía mecánica? ¿Aumenta, disminuye o permanece constante?

d.- Halle la expresión genérica para la energía potencial en función de las posiciones que va tomando el carrito cuando se lo libera de su máximo apartamiento.

e.- A través del análisis de las gráficas de energía potencial decida en que casos el equilibrio es estable o inestable.

f.- A través de la relación  realizar la gráfica de la fuerza versus x y a partir de un análisis dinámico corrobore lo concluido en el inciso e.
 
 

2da Etapa:

a.- Repetir el inciso d de la primera etapa modificando el referencial en mas de dos oportunidades.

b.- Realice un gráfico que muestre simultáneamente las U(r) halladas en el inciso a.

c.- Recordando que la energía potencial es una función de posición, ¿por qué, al analizar simultáneamente las gráficas de energía potencial trazadas con distintos referenciales, a cada punto del espacio le corresponden distintos valores de energía potencial?

d.- Elegir una de las curvas obtenidas en b y graficar la diferencia de energía potencial entre dos puntos r=A y r=B, es decir graficar U(A)-U(B).

e.- Elegir otra curva de la familia obtenida en b y calcular la diferencia de energía potencial entre los mismos puntos.

f.- Volcar los resultados de los incisos d y e en un mismo gráfico. ¿Cómo interpreta los resultados obtenidos?

g.- ¿La diferencia de energía potencial entre los puntos A y B depende del referencial elegido?
 
 

3era Etapa:

Suponga que en esta montaña rusa en su parte más alta se interceptan dos pistas perpendiculares entre sí con distintas curvaturas, una convexa y otra cóncava. Un dispositivo mecánico que permite a los carritos cambiar de pista.
 
 

a.- En cuál de las pistas preferiría usted que se encontrará el carrito en que usted viaja en caso de que un desperfecto lo detenga y tratando de repararlo el carrito sufra un pequeño desplazamiento sobra la pista. No hay posibilidad de descarrilamiento.

b.- Halle la expresión genérica para la energía potencial en función de las posiciones que va tomando el carrito cuando se lo libera de su máximo apartamiento para ambas pistas.

c.- A través del análisis de las gráficas de energía potencial decida en que pista el equilibrio es estable o inestable.

d.- A través de la relación  realizar la gráfica de la fuerza versus x y a partir de un análisis dinámico corrobore lo concluido en el inciso c.

e.- ¿Qué estado de equilibrio diría usted posee el punto de Unión de ambas pistas?
 
 

4ta Etapa:

Plantear y graficar las ecuaciones de energía potencial para alguno de los siguientes casos:

a.- Péndulo simple.

b.- Partícula sujeta a un resorte que se mueve horizontalmente sobre una superficie sin roce.

c.- Una barra colgada, que puede oscilar alrededor de un eje fijo colocado en su extremo. Despreciar el roce con el soporte.

d.- Una barra con un extremo apoyado sobre una mesa, que se la aparta de su posición de equilibrio.

e.- Una masa m que se encuentra en el vértice superior de un triángulo equilátero que posee masas de igual magnitud en sus otros vértices.

f.- Ídem para el caso que las tres masas estén cargadas eléctricamente. Las de las bases

poseen cargas de igual signo y opuesto a la del vértice superior.

g.- Una carga situada en el centro de un cuadrado que posee cargas iguales en cada uno de sus vértices. La carga central puede tener igual o distinto signo que la de los vértices.

Analizar similitudes y diferencias entre los distintos casos y decidir cuales son las situaciones que representan equilibrios estables y cuales inestables.
 
 

5 ta Etapa:

Para las mismas situaciones planteadas anteriormente, decidir:

a.- bajo que condiciones las partículas realizan un movimiento periódico.

b.- en que condiciones este movimiento periódico se aproxima a un movimiento armónico simple.
 
 

Se presentan a continuación gráficas que permiten responder algunos de los interrogantes planteados en la guía.
 
 


 

Figura 9: Gráfica de la energía potencial para el carro ubicado en el valle de la pista.
 
 
 


 
 

Figura 10: Gráfica de la energía potencial para el carro ubicado en la cresta de la pista.
 
 

Figura 11: Gráfica de la energía potencial para el carro ubicado en la intersección de las pistas perpendiculares
 
 
 

Figura 12: Otra vista de la figura 11
 
 
 

Figura 13: Otra vista de la figura 11
 
 
 

Figura 14: Gráfica de la fuerza que actúa sobre el carrito en el valle de la pista.
 


 
 
 
 

Figura 15: Gráfica de la fuerza que actúa sobre el carrito en la cresta de la pista.
Se muestran dos de las pantallas del soft que el Ing. Horacio Chiodini,



 
 

integrante del grupo IMApEC está desarrollando sobre esta temática.
 
 


Referencias
 
 

BAADE, N. et al (1996). Entrevista y entrevistados: Una experiencia piloto. Memoria del Tercer Simposio de Investigadores en Educación en Física. Córdoba. Argentina. En prensa.

BEICHNER, R. (1997). Visualizing potential surfaces with a spreadsheet. The physics teacher. Vol.35, Feb. 1997.

BORDOGNA, C. et al (1996). PC: una estrategia alternativa para la introducción de a la teoría de campo. Memoria del Tercer Simposio de Investigadores en Educación en Física. Córdoba. Argentina. En prensa.

GRAYSON,D. et al (1996). Use of the computer for research on student thinking in physics. Am.HJ Phys. 64 (5) 557.

HENESSY, S. et al (1995). A classroom intervention using a computer-augemented curriculum form mechanics. Int. J.S.Educ..Vol.17,2,189-200.

LIWIN, E. (1995). Tecnología Educativa. cap.3. Paidón, Buenos Aires, Argentina.

MOREIRA, M. (1995). La teoría del aprendizaje significativo de Ausubel. Ensino e Aprendizagem: Enfoques Teóricos. Sao Paulo. Editora Moraes, p.61-73.

NOVAK J. et al (1988). Aprendiendo a Aprender. Cap.8.

PORLAN R. (1993). Constructivismo y escuela. Hacia un modelo enseñanza-aprendizaje basado en la investigación educativa. Diado. Editorial S.L..Sevilla.